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Outline

e Brief review of empirical model error correction

e SPEEDY model

e Generation of 6-hour forecasts and analysis increments using NCEP
reanalysis

e Separation of increments into seasonal, diurnal, and state-dependent
components

e Estimation and correction of model errors
e Results: our method 1s effective and computationally feasible

e Conclusions
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Background

Leith (1978), first to formulate state-dependent correction procedure
e given a model: X = M(x)

e sought an improved model of the form: x = M(x) +Lx+¢

Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error

Background

Leith (1978), first to formulate state-dependent correction procedure
e given a model: X = M(x)
e sought an improved model of the form: x = M(x) +Lx+¢

e the tendency error g of the improved model is given by
g=x'—M(x')—Lx'—c¢

where x' is the state taken as truth (e.g. reanalysis)

Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error

Background

Leith (1978), first to formulate state-dependent correction procedure
e given a model: X = M(x)
e sought an improved model of the form: x = M(x) +Lx+¢

e the tendency error g of the improved model is given by
g=x'—M(x')—Lx'—c¢

where x' is the state taken as truth (e.g. reanalysis)

e derived an empirical correction by minimizing < g' g >
with respect to ¢ and L

Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error

Background

Leith (1978), first to formulate state-dependent correction procedure
e given a model: X = M(x)
e sought an improved model of the form: x = M(x) +Lx+¢

e the tendency error g of the improved model is given by
g=x'—M(x')—Lx'—c¢

where x' is the state taken as truth (e.g. reanalysis)

e derived an empirical correction by minimizing < g' g >
with respect to ¢ and L

e ¢; 1S a state-independent bias estimate

e [; X 1s a state-dependent estimate of the model error
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Background

DelSole and Hou (1999)

e applied Leith’s procedure to a 2-layer QG model on an 8 x 10 grid
(N=160 degrees of freedom)

e perturbed the model parameters to generate ‘nature’
e resulting model errors were strongly state-dependent

e [eith’s state-dependent error correction extended forecast skill to within
limits imposed by observational noise

e computationally prohibitive for operational use
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Our Method

Generate time series of 6-hour model forecasts and analysis increments
relative to the NCEP reanalysis using a simple but realistic GCM.
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Our Method

Generate time series of 6-hour model forecasts and analysis increments
relative to the NCEP reanalysis using a simple but realistic GCM.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
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Our Method
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Our Method

Generate time series of 6-hour model forecasts and analysis increments
relative to the NCEP reanalysis using a simple but realistic GCM.

I. Estimate the monthly bias.

a. Compare the impact of correcting the model integration with
statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors

a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.

I'V. Correct the state-dependent errors.
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SPEEDY Model, Molten1 (2003)

e primitive equations, global spectral model

e contains parameterizations of condensation, convection, clouds, radi-
ation, surface fluxes, and vertical diffusion

¢ T30 horizontal resolution, 7 sigma levels

e integrates vorticity, divergence, temperature, specific humidity, and
surface pressure

e post-processed into horizontal wind, temperature, specific humidity,
geopotential height, and surface pressure on 96x48 grid, 7 pressure
levels

e dissipation and time-dependent forcing determined by climatological
SST, surface moisture, albedo, land-surface vegetation, etc.
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Generating Time Series of Model Forecasts and Errors

1982-1986 NCEP

x'(t)

SPEEDY
forecasts

analysis
iIncrements

Reanalysis
t t
X (t+1) X (t+2)
f f
Xg (t+1) Xg (t+2)
Oxg(t+1) | [Oxg7(t+2)
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Time Series and 5-year Climatology

o x. (t) = time series of model states

o Ox,(t) = corresponding analysis increments
e 5-year SPEEDY 6-hour climatology given by monthly mean < x§ >
e 5-year reanalysis climatology given by monthly mean < x' >

e Bias given by monthly mean < dxg >
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200hPa Zonal Wind Monthly Bias

5-year Reanalysis Climatology < x' > (contour), Bias < dxg > (color)
January July

200hPa SPEEDY Uwind, Jan 1982-86 [m/s] 200hPa SPEEDY Uwind, Jul 1982-86 [m/s]

O

e SPEEDY underestimates zonal wind on the poleward side of the win-
ter hemisphere jet.

e Exhibits large winter polar bias.
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), veritying against NCEP reanalysis.
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), veritying against NCEP reanalysis.
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Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error 22

I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), veritying against NCEP reanalysis.

1. Control: Integrate biased model, x = M(x)

2. Corrected a posteriori: Correct control forecast by bias < dxg >

at 6 hours, bias < 8x;, > at 12 hours, etc.
12
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), veritying against NCEP reanalysis.

1. Control: Integrate biased model, x = M(x)

2. Corrected a posteriori: Correct control forecast by bias < dxg >

at 6 hours, bias < 0x;, > at 12 hours, etc.

<Oxg>
At

3. Corrected online: Integrate model, x = M(x) +

< Ox, > is a daily linear interpolation

(e.g. on July 1, < dx¢ >= <8X2(Jun)>;<sxg(m)>)
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I. Monthly Bias Correction

24
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I. Monthly Bias Correction
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500hPa November 1987 Global Mean Anomaly
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e Monthly bias correction gives substantial forecast improvement.

e Online correction performs better than a posteriori correction.
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I. Monthly Bias Correction

Improvement of Online Correction Relative to Control
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e Online correction 1s most effective at lower levels.
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I. Monthly Bias Correction

Improvement of Online Correction Relative to Control
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e Online correction 1s most effective at lower levels.

e Improvements are uniform across levels in T, across seasons by level.
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I1. Diurnal Bias Correction

Leading EOFs of Cgyagye, T at 6 = 0.95, Jan 1982-1986

sig=0.95 debiased Temp Jan 1982-86 Increment EOF1 sig=0.95 debiased Temp Jan 1982-86 Increment EOF2

e Lack of diurnal forcing results in wavenumber 1 structure in the errors

e SPEEDY underestimates (overestimates) near surface daytime (night-
time) temperatures, more prominent over land
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I1. Diurnal Bias Correction

29

Principal Components

e Project leading EOFs onto anomalous analysis increments (Jan *83)

0.02 i

0.015

0.01
0.005{ [}

ol'}

~0.005t

—0.01F "1

AC of Temperature and EOF

-0.015

-0.02

e [ eading pair of EOFs out of phase by 6 hours
e Find average strength of daily cycle over Jan 1982-86

e Compute diurnal correction as a function of the time of day
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I1. Diurnal Bias Correction

January
1982-1986

Diurnally
Corrected
1987

EOFs of Cgyagya

sig=0.95 debiased Temp Jan 1982—-86 Increment EOF1 sig=0.95 debiased Temp Jan 1982—-86 Increment EQF2

I —
-25 -2 -15 -1 -05 05 1 1.5 2 3 -25 -2 -15 -1 -05 05 1 1.5 2 3

sig=0.95 debiased Temp Jan 1987 Increment EOF2 sig=0.95 debiased Temp Jan 1987 Increment EOF1

e Diurnal correction substantially reduces error amplitude
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I11. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator

e Forecast state covariance: Cyrr =< xI xUT >

e Cross covariance: Cguyr =< 8X5 X7 >

Leith’s correction operator, given by L = Cgyayr Cyie 1, provides a
state-dependent correction:

1
. /
x =M(x) + [Lx +c} "

where ¢ =< 0xg >

Problem: Direct computation of Lx' requires O(N?) floating point op-
erations every time step!
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I11. State-Dependent Error Estimation

Approximation of Leith correction operator:

e univariate covariances generate block diagonal structure
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I11. State-Dependent Error Estimation

Approximation of Leith correction operator:
e univariate covariances generate block diagonal structure

¢ 3000km covariance localization introduces sparsity to each block
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I11. State-Dependent Error Estimation

Approximation of Leith correction operator:

e univariate covariances generate block diagonal structure

¢ 3000km covariance localization introduces sparsity to each block

1

Explained variance of the SVD
corresponding to u at sigma=0.2 for
the dense and sparse Leith operators.

o
©

o
o))

o
~

Explained Variance

o
N

===gparse L
= dense L

100 200 300 400 500
SVD mode

¢ 400 modes required to explain 90% of variance in dense L

¢ 40 modes required to explain 90% of variance 1n sparse L
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I11. State-Dependent Error Estimation

35

First step 1n our new approach:

Low-Dimensional Approximation based on regression
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I11. State-Dependent Error Estimation

First step 1n our new approach:

Low-Dimensional Approximation based on regression

e SVD of the sparse analysis increment & state covariance,
Csyxt = ULV, identifies pairs of spatial patterns or EOFs (uy and
vi) that explain as much of possible of the mean-squared temporal
covariance between the analysis increment and state anomalies.

Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error

I11. State-Dependent Error Estimation

37

Analysis inc. (color) and state (contour) coupled signals

sig=0.2 Uwind[m/s] Jan 1982—-86 Mode 3
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® uj3 suggests shifting the anomaly v3; northeast (over the dependent sample)

Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error

II1. State-Dependent Error Estimation

38

Analysis 1nc. (color) and state (contour) coupled signals

Z

sig=0.95 Temp[K] Jan 1982-86 Mode 2
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® u, suggests damping the anomaly v, (over the dependent sample)
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I11. State-Dependent Error Estimation

First step 1n our new approach:

Low-Dimensional Approximation based on regression

e SVD of the sparse analysis increment & state covariance,
Csyxt = ULV, identifies pairs of spatial patterns or EOFs (uy and
vi) that explain as much of possible of the mean-squared temporal
covariance between the analysis increment and state anomalies.

e Principal Components: project EOFs onto dependent sample

an(t) = u; - 8x (1
bi(t) = v -x" (1)
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II1. State-Dependent Error Estimation

First step 1n our new approach:
Low-Dimensional Approximation based on regression

e SVD of the anomalous analysis increment & state covariance,
Csyxt = ULV, identifies pairs of spatial patterns or EOFs (uy and
vi) that explain as much of possible of the mean-squared temporal
covariance between the analysis increment and state anomalies.

e Principal Components: project EOFs onto dependent sample

(1) = g -8x(1)
bi(t) = v -x" (1)

e Heterogeneous correlation maps:

P [6X3/7 bk] —

Uk

(\/<611;2<>)
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I11. State-Dependent Error Estimation

Analysis 1nc. (color) and state (contour) coupled signals

sig=0.2 Uwind Jan 1982-86 Correlation Mode 3

B

® u; is predictable given the forecast anomaly x" (over the dependent sample)
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I11. State-Dependent Error Estimation
Analysis inc. (color) and state (contour) coupled signals

sig=0.2 Uwind Jan 1982-86 Correlation Maps

e uy is predictable given the forecast anomaly x (over the dependent sample)
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I11. State-Dependent Error Estimation

Analysis 1nc. (color) and state (contour) coupled signals

sig=0.95 Temp Jan 1982-86 Correlation Mode 2

* u, is predictable given the forecast anomaly x" (over the dependent sample)
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I11. State-Dependent Error Estimation
Analysis 1nc. (color) and state (contour) coupled signals

sig=0.95 Temp Jan 1982-86 Correlation Maps

e uy is predictable given the forecast anomaly x (over the dependent sample)
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I11. State-Dependent Error Estimation

Second step 1n our new approach:

Leith’s empirical correction involves solving C,«Ww = X’ for w at each

fime step. / 1y
Lx = ngaxf CXfo X

— CSXaXfW
—UXV'w
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I11. State-Dependent Error Estimation

Second step 1n our new approach:

Leith’s empirical correction involves solving C,«Ww = X’ for w at each

fime step. ) 1
Lx = ngaxf CXfo X

— CSXaXfW

=UZV'w
However, only the component of w in the space spanned by the right
singular vectors vy can contribute to the empirical correction.
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I11. State-Dependent Error Estimation

Second step 1n our new approach:

Leith’s empirical correction involves solving C,«Ww = X’ for w at each

fime step. ) 1
Lx = ngaxf CXfo X

— CSXaXfW
—UXV'w

However, only the component of w in the space spanned by the right
singular vectors vy can contribute to the empirical correction.

Cyp = <bb' > (over dependent sample)
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I11. State-Dependent Error Estimation

Second step 1n our new approach:

Leith’s empirical correction involves solving C,«Ww = X’ for w at each

fime step. ) 1
Lx = ngaxf CXfo X

— CSXaXfW

=UZV'w
However, only the component of w in the space spanned by the right
singular vectors vy can contribute to the empirical correction.

Cyp = <bb' > (over dependent sample)
b (T) = v, -X'(T) (at independent sample forecast time T)
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I11. State-Dependent Error Estimation

Second step 1n our new approach:

Leith’s empirical correction involves solving C,«Ww = X’ for w at each

fime step. ) 1y
Lx = ngaxf CXfo X

— CSXaXfW

=UZV'w
However, only the component of w in the space spanned by the right
singular vectors vi can contribute to the empirical correction.

Cpp = < bb' > (over dependent sample)
b (T) = v, -X'(T) (at independent sample forecast time T)

The linear system C,Y= b may then be solved for y at time T. The

solution gives an approximation of w, namely w ~ Y}~ YiVk, wWhich is
exact if K = N.
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IV. State-Dependent Correction

The control model:

X = M(x)
The state-independent online corrected model:
1
x =M < Oxg > —
X (X) + X¢ AL

Leith’s state-dependent corrected model given by:

X =M(x) + | < dxg > %—Lx’]i

At
Our low-dimensional state-dependent corrected model 1s given by:
s 1
x =M {< OX > c }—
X (X) + ). ¢ +1§1 U Ok Yk At

where Y= Cpp, 'band by = v, - X/
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IV. State-Dependent Correction

51

Our low-dimensional state-dependent corrected model 1s given by

1

K
X=M(X)+ | <O0Xc >+ Y WOYk|—
(x) [ 6 kzlkkk}m

where Y= Cpp, 'band by = v, - X'
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IV. State-Dependent Correction

During forecasts, a few (K~10) dominant anomalous model state sig-
nals vy can be projected onto the anomalous model state vector X'.

Our low-dimensional state-dependent corrected model 1s given by

K
X = M(X) + [ < ng > —I—Z 111((51<’Y1(}Ai
k=1 L

where Y= Cpp, 'band by = v, - X/
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IV. State-Dependent Correction

During forecasts, a few (K~10) dominant anomalous model state sig-
nals vy can be projected onto the anomalous model state vector xX'. Then

K
Z U Ok Vi
k=1

e is the best representation of the dependent sample analysis increment
anomalies 8x* in terms of the current anomalous forecast state X’

e may amplify, dampen, or shift the flow anomaly local to uy

Our low-dimensional state-dependent corrected model 1s given by

K
X = M(X) —+ [ < SXg > —I—Z UKGK’YK}AL
k=1 L

where Y= Cpp, 'band by = v, - X/
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IV. State-Dependent Correction

54

sig=0.2 Uwind[m/s] Jan 1982-86 Mode 3
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IV. State-Dependent Correction

55

0=0.95 Temp
Error (shades)
and State (contour)

6-hr forecasts

debiased
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low-d corrected
T

2 £ § 888 20

—

ig=0.95 Low—D—Corrected Temp[K] 6hrForecast 12Z 01/30/87

sig=0.95 Temp[K] Jan 1982-86 Mode 2
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IV. State-Dependent Correction

We measure the forecast improvement using Leith’s (univariate) dense
and sparse correction operators and our low-dimensional approxima-
tion.

Dense Leith | Sparse Leith | Low-Dim
Flops per time step O(N;)) O(N7)| O(Ngp)

Global Improvement| —8% (-4hr) 2% (1hr) 4% (2hr)

NH Extratropics Improvement | —6% (-3hr) 4% (2hr) | 6% (3hr)

Chart contains average January 1987 500hPa improvement over state-
independent corrected forecasts. Correction 1s more effective in regions
where the heterogeneous correlations p are large.
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Results

e State-independent correction of SPEEDY monthly bias dramatically
improves forecasts

e Correction during integration outperforms correction a posteriori
e Time-dependent correction reduces amplitude of diurnal errors
e Our method of low-dimensional state-dependent correction:

e improves forecasts, more notably where correlations are large
e gives better results than Leith’s correction operator
e is 10 orders of magnitude cheaper! (SPEEDY implementation)

e should work easily with existing data assimilation and ensemble
schemes

e requires only the analysis increments for sampling

Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error 58

Future

e Test implementation on NCEP operational model at reduced resolu-
tion with multivariate covariance.

e Implement with data assimilation and ensemble schemes

e Reduce jumps in reanalysis climatology due to changes in observing
system

Research supported by NOAA THORPEX grant NAO40AR4310103
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